Purpose
To compute the matrices of the H2 optimal controller
| AK | BK |
K = |----|----|,
| CK | DK |
from the state feedback matrix F and output injection matrix H as
determined by the SLICOT Library routine SB10VD.
Specification
SUBROUTINE SB10WD( N, M, NP, NCON, NMEAS, A, LDA, B, LDB, C, LDC,
$ D, LDD, F, LDF, H, LDH, TU, LDTU, TY, LDTY,
$ AK, LDAK, BK, LDBK, CK, LDCK, DK, LDDK, INFO )
C .. Scalar Arguments ..
INTEGER INFO, LDA, LDAK, LDB, LDBK, LDC, LDCK, LDD,
$ LDDK, LDF, LDH, LDTU, LDTY, M, N, NCON, NMEAS,
$ NP
C .. Array Arguments ..
DOUBLE PRECISION A( LDA, * ), AK( LDAK, * ), B( LDB, * ),
$ BK( LDBK, * ), C( LDC, * ), CK( LDCK, * ),
$ D( LDD, * ), DK( LDDK, * ), F( LDF, * ),
$ H( LDH, * ), TU( LDTU, * ), TY( LDTY, * )
Arguments
Input/Output Parameters
N (input) INTEGER
The order of the system. N >= 0.
M (input) INTEGER
The column size of the matrix B. M >= 0.
NP (input) INTEGER
The row size of the matrix C. NP >= 0.
NCON (input) INTEGER
The number of control inputs (M2). M >= NCON >= 0.
NP-NMEAS >= NCON.
NMEAS (input) INTEGER
The number of measurements (NP2). NP >= NMEAS >= 0.
M-NCON >= NMEAS.
A (input) DOUBLE PRECISION array, dimension (LDA,N)
The leading N-by-N part of this array must contain the
system state matrix A.
LDA INTEGER
The leading dimension of the array A. LDA >= max(1,N).
B (input) DOUBLE PRECISION array, dimension (LDB,M)
The leading N-by-M part of this array must contain the
system input matrix B. Only the submatrix
B2 = B(:,M-M2+1:M) is used.
LDB INTEGER
The leading dimension of the array B. LDB >= max(1,N).
C (input) DOUBLE PRECISION array, dimension (LDC,N)
The leading NP-by-N part of this array must contain the
system output matrix C. Only the submatrix
C2 = C(NP-NP2+1:NP,:) is used.
LDC INTEGER
The leading dimension of the array C. LDC >= max(1,NP).
D (input) DOUBLE PRECISION array, dimension (LDD,M)
The leading NP-by-M part of this array must contain the
system input/output matrix D. Only the submatrix
D22 = D(NP-NP2+1:NP,M-M2+1:M) is used.
LDD INTEGER
The leading dimension of the array D. LDD >= max(1,NP).
F (input) DOUBLE PRECISION array, dimension (LDF,N)
The leading NCON-by-N part of this array must contain the
state feedback matrix F.
LDF INTEGER
The leading dimension of the array F. LDF >= max(1,NCON).
H (input) DOUBLE PRECISION array, dimension (LDH,NMEAS)
The leading N-by-NMEAS part of this array must contain the
output injection matrix H.
LDH INTEGER
The leading dimension of the array H. LDH >= max(1,N).
TU (input) DOUBLE PRECISION array, dimension (LDTU,M2)
The leading M2-by-M2 part of this array must contain the
control transformation matrix TU, as obtained by the
SLICOT Library routine SB10UD.
LDTU INTEGER
The leading dimension of the array TU. LDTU >= max(1,M2).
TY (input) DOUBLE PRECISION array, dimension (LDTY,NP2)
The leading NP2-by-NP2 part of this array must contain the
measurement transformation matrix TY, as obtained by the
SLICOT Library routine SB10UD.
LDTY INTEGER
The leading dimension of the array TY.
LDTY >= max(1,NP2).
AK (output) DOUBLE PRECISION array, dimension (LDAK,N)
The leading N-by-N part of this array contains the
controller state matrix AK.
LDAK INTEGER
The leading dimension of the array AK. LDAK >= max(1,N).
BK (output) DOUBLE PRECISION array, dimension (LDBK,NMEAS)
The leading N-by-NMEAS part of this array contains the
controller input matrix BK.
LDBK INTEGER
The leading dimension of the array BK. LDBK >= max(1,N).
CK (output) DOUBLE PRECISION array, dimension (LDCK,N)
The leading NCON-by-N part of this array contains the
controller output matrix CK.
LDCK INTEGER
The leading dimension of the array CK.
LDCK >= max(1,NCON).
DK (output) DOUBLE PRECISION array, dimension (LDDK,NMEAS)
The leading NCON-by-NMEAS part of this array contains the
controller input/output matrix DK.
LDDK INTEGER
The leading dimension of the array DK.
LDDK >= max(1,NCON).
Error Indicator
INFO INTEGER
= 0: successful exit;
< 0: if INFO = -i, the i-th argument had an illegal
value.
Method
The routine implements the formulas given in [1], [2].References
[1] Zhou, K., Doyle, J.C., and Glover, K.
Robust and Optimal Control.
Prentice-Hall, Upper Saddle River, NJ, 1996.
[2] Balas, G.J., Doyle, J.C., Glover, K., Packard, A., and
Smith, R.
mu-Analysis and Synthesis Toolbox.
The MathWorks Inc., Natick, Mass., 1995.
Numerical Aspects
The accuracy of the result depends on the condition numbers of the input and output transformations.Further Comments
NoneExample
Program Text
NoneProgram Data
NoneProgram Results
None