The transformations are:
order=1:
    e = [E0 E1][1].[1]
        [E2  0][e] [n]
   
    n = [N0 N1][1].[1]
        [N2  0][e] [n]
    e = [E0 E1 E3][1 ] [1 ]
        [E2 E4  0][e ].[n ]
        [E5  0  0][e²] [n²]
   
    n = [N0 N1 N3][1 ] [1 ]
        [N2 N4  0][e ].[n ]
        [N5  0  0][e²] [n²]
    e = [E0 E1 E3 E6][1 ] [1 ]
        [E2 E4 E7  0][e ].[n ]
        [E5 E8  0  0][e²] [n²]
        [E9  0  0  0][e³] [n³]
   
    n = [N0 N1 N3 N6][1 ] [1 ]
        [N2 N4 N7  0][e ].[n ]
        [N5 N8  0  0][e²] [n²]
        [N9  0  0  0][e³] [n³]
In other words, order=1 and order=2 are equivalent to order=3 with the higher coefficients equal to zero.
Last changed: $Date: 2014-11-28 16:46:08 +0100 (Fri, 28 Nov 2014) $